Resistivity and Potential Difference Answers

1. Resistivity $=\frac{\text { Resistance } \times \text { Area }}{\text { Length }} 1$
$\frac{750}{2}=375 \Omega$
A resistance reading which is significantly larger than others in the survey (1) 1
Mosaic (stone) floor is a poor conductor of electricity or floor will probably contain less water than surrounding soil (1) 1
Feature containing water-logged soil e.g. ditch (1)
Water contains ions/conducts current/reduces resistivity (1) 2
$R=\frac{\rho l}{A} \quad$ (1)
$=\frac{2\left(1.7 \times 10^{-8} \Omega \mathrm{~m}\right)(5.0 \mathrm{~m})}{2.0 \times 10^{-6} \mathrm{~m}^{2}}$
$=8.5 \times 10^{-2} \Omega \quad$ (1)
Error $=\frac{\left(8.5 \times 10^{-8}\right)}{(750 \Omega)} \times 100=1.1 \times 10^{-2} \%$
This is likely to be insignificant compared to random uncertainties due to
varying resistivity of ground (1)
2. Device
$\begin{array}{ll}\text { Potential divider or potentiometer } & 1\end{array}$

Voltmeter reading

A 9.0 V (1)
B 0 V (1)
2
Diagram
Label X two thirds of the way down from A [Allow e.c.f.]

Explanation

Any 3 points from the following:

- \quad lamp in parallel with lowest $1 / 3$ of AB
- when resistors in parallel, resistance decreases
- p.d. across lamp reduced to below 3 V
- current divides
- no longer enough current to light lamp 3

3. Equation to define resistivity
$\rho=\frac{R A}{l} \mathbf{(1)}$
All symbols defined (resistivity, resistance, length, cross-sectional area) (1) (1)
[3 symbols only defined (1)]
3
Resistance meter
Any two from:

- the resistance between the two probes is measured, not the resistivity
- because you cannot measure the cross-sectional area of skin between the probes
- A and 1 both vary; cannot calculate resistivity (1) (1)

Whether results support claims
Yes (1)
Any two from:

- resistance chances with programme content
- least resistance with political programme
- sweat reduces resistance / is a better conductor (1) (1)

4. Type of scale

Logarithmic / powers of 10 (1)
Reason: e.g. values of resistivity cover a very large range or stretches out low values / so values fit on the graph (1)
$\underline{\text { Resistor }}$
(i) $\quad A=\pi r^{2}=\pi \times(4.0 \times 10-4)^{2} \mathbf{(1)}$
$=5.03 \times 10^{-7} \mathrm{~m}^{2}$ (no u.e) (1)
2
(ii) Recall of $R=\rho / / A$ (1)

Length $l=R A / \rho$
$=0.12 \times 5.0 \times 10^{-7} / 1.8 \times 10^{-8}$ [substitutions]
$=3.3 \mathrm{~m}$ (1)
Advantage of using iron wire of same diameter
Shorter piece of wire needed (if iron chosen) (1)
1
5. Measurement needed

Any three from:

- Resistance
- Distance between probes
- Effective area/cross sectional area
- $R=\rho \frac{L}{A}$ (1) (1) (1)

Equation of line A

Intercept $=-3.5(\Omega \mathrm{~m})(+/-0.3)(\mathbf{1})$
Gradient $=1.5\left(\Omega \mathrm{~mm}^{-1}\right)(+/-0.05)(\mathbf{1})$
So equation is $\rho=1.5 d-3.5$ [Or equivalent, e.c.f. allowed] (1) 3
Addition of line
Points correctly plotted (-1 for each error, allow $1 / 2$ square tolerance) (1) (1)
Line of best fit drawn (1)
Best distance
Between 1.90 and $1.99 \mathrm{~km}(\mathbf{1}) \quad 1$

